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Parallel Bak-Sneppen model and directed percolation
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We introduce a parallel version of the Bak-Sneppen model that is rigorously shown to evolve spontaneously
to a site directed percolation critical point. This exemplifies the mechanism underlying a class of self-organized
critical models, in which self-organized criticality can be traced back to the existence of an underlying dy-
namical critical point. This critical point can be reached either by tuning a control parameter or by driving the
system infinitely slowly(i.e., by going at a very small rate of evolutjorAn alternative dynamical evolution
formulation of the parallel version of the Bak-Sneppen model enables us to get a very precise estimation of the
critical threshold for the corresponding directed percolation probf&h063-651X96)00910-3

PACS numbe(s): 02.50.Ey, 05.70.Ln, 64.60.Ht

[. INTRODUCTION method for DP, which allows us to obtain very precise esti-
mations of the critical point. It exemplifies the fact that some
In a recent articlgd1] we proposed a general conceptual SOC models spontaneously organize themselves on known
framework to understand self-organized criticaliOCQ as  tunable dynamical critical points. This extends previously
deeply related to tuned out-of-equilibrium critical points, if reported cases, such as a dynamical model of rupture in
viewed in an appropriate parameter space. More preciselyyhich the rupture pattern self-organizes progressively in the
SOC was envisionned as resulting from the tuning of theshape of the infinite critical bond percolation cluster and the
order parameter to a vanishingly small but positive valuefupture stops when critical percolation is reacfiéf
thus ensuring that the corresponding control parameter lies
exactly at its critical value for the underlying depinning tran- Il. THE EXTREMAL BAK-SNEPPEN MODEL
sition. This mechanism was proposed to apply to models of ) ) )
sandpiles, earthquakes, depinning, fractal growth, and forest We study the one-dimensional version of the Bak-
fires, all examples that have been proposed as exhibitiné”eppe” model of evolution, which is defined as follows.
SOC. ach of theN sites on a line array is filled with independent
In this paper, we show how this scenario applies quantifandom numberg;,i=1,2,... N, drawn from a uniform
tatively on a variant of the Bak-SneppéBS) model of evo-  distribution in[0,1]. At each step of the dynamics, the small-
lution [2], well known to display SOGpower-law behavior €stp; in the system is selected and replaced by a new ran-
and the existence of a dynamical steady $tafée variant dom numbep; still in [0,1]. At the same time, we update its
uses a modified rule in terms of the parallel evolution oftwo nearest neighbors _;,p;.; with two new, independent
active sites. We are then able to show rigorously that thigandom numbers. Periodic boundary conditions are enforced.
modified BS model converges precisely onto the criticalNote that a choice of a uniform distribution is by no way
point of directed percolatiofDP). We also introduce a tuned restrictive since what really matters is the nondecreasing
version of the parallel variant of the BS model equivalent tocharacter of theicumulative probability distribution func-
DP, exemplifying the duality between this class of SOC andion for any probability density. Bak and Sneppen argued
tunable critical points. Our derivation does not allow us tothat their model is to be thought of as a model of Darwinian
draw conclusions about the initial version of the BS model,biological evolution: eaclp; represents the “fitness” of the
while extensive numerical simulations seem to exclude thaitth species, i.e., its adaptativity to changes and mutations.
it belongs to the DP universality clag3]. We then present a The species with the loweg} dies and its extinction affects
general dynamical evolution equation equivalent to DPjts nearest neighbors _1,p;. 1 in the ecological nest, which
which allows for a precise determination of the critical respond through an instantaneous mutation. Numerical evi-
threshold. The outline of this paper is as follows. Section lldence indicates that, in the long-time and laMgéimits, the
describes the original BS model and summarizes the resulfgrobability density of sites is strictly zero for gf<p. and
already known. In Sec. Il we introduce a parallel version ofconstant above.=0.667 02-0.000 08[3,5,6]. In the con-
the BS model, which we show to be completely equivalent taext of statistical mechanics, a more appealing interpretation
a site DP problem, though involving an unusual lattice topol-may be to think of the Bak-Sneppen model as a model for
ogy. Section IV deals with a very powerful transfer-matrix self-organized depinning, where the interface undergoes a
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local rearrangement where the forEe=1—p; is maximal. avalanche, which either dies fgr<p. when all sites are
This was the original motivation of SneppEH|: eventually, greater tharp or has a finite probability to go on forever for
the interface(which is equal to the set of thg’s) hardly p>p.. Random numbers used when a site topples are still
moves, stuck around the critical point. taken from a uniform density in0,1]. Herep plays the role
SOC models feature not only an asymptotic stationaryof @ control parameter and each run for a differpntorre-
probability density(the so-called “steady stat@ but also sponds in the original model to starting with a given
display power-law distributions for “avalanches.” In the BS Pmin=Pp. Note that forp<p., the p avalanches have a
model, these are defined in the following way. Starting fromnested structure: each’ avalanche is contained within a
a givenp,, at timet, the duratiort, of an avalanche is the largerp avalanche fop’ <p. Referenc¢3] used this remark
minimum number of time stepts required forp,,(t+t’) to  to get the following estimates: 7=1.073+0.003,
be greater thap,,(t). At the timet+1, among the three y=2.70-0.02, and ov, =0.4114-0.0020. Here and
new random numbers in the system, one or more can béroughout this papey describes the average size of an ava-
smaller thanp,(t) and the smallest one of all three will lanche neap., (s(p))~|p—pc| ?, andov, is the expo-
initiate subsequent topplings, which follow the same rule anent describing the maximum spatiae., with respect to the
each subsequent time step. This avalanche stops when &éansverse coordinaig extent of an avalanchdi(t) ~t7”:
sites are abov@,i,(t). Then an avalanche starts elsewherefor an avalanche lastingtime stepst large, neamp.. The
nucleating from the next minimal site, until a steady state igdefinition of 7 is the same as in the mean-field version.
reached where an infinitedhe size of an avalanche being
defined as the number of toppled sjtesalanche develops: || cORRESPONDENCE BETWEEN THE PARALLEL BS

the toppling of the minimal site will eventually trigger an MODEL AND DIRECTED PERCOLATION
infinite number of topplings among spatially connected sites.

Note, however, that the avalanches in this extremal BS Our parallel BS model is the same as the initial extremal
model are spatially but not necesariipatiotemporallycon-  version except thaall sites that have their numbers below
nected, unlike what happens for DP. This is due to the exPmin, @nd not solely the smallest one, have their values and
tremal nature of the dynamics in which an avalanche spread§ose of their neighbors replaced by new random numbers in
out only from the minimal site at all time steps and from its[0,1]. We also introduce the tuned parallel BS model, which
two neighbors, while other possible sites being smaller thamaturally consists in updating at a given time step all sites
the p,yn, that initially triggered the avalanche are left unacti- being smaller tharp and their (respective left and right
vated, until eventually they get modified when the avalanch@earest neighbors, whepeis fixed in[0,1]. The updating is
returns to them. again done in parallel for all unstable sites and any site
Two major difficulties have so far precluded an exactneighbored by two toppling sites is updated once and only
analysis. First, there are no evident means of relating thence.p plays the role of a control parameter. Note first that,
global selection rule and the local cooperative effects. This ign contrast to the extremal BS version, avalanches are both
bypassed in a mean-fieldgandom neighbgrversion where spatially and spatiotemporally connected, as in DP.
the local spatial connectivity is lost and the problem becomes We first establish the equivalence between the tuned par-
amenable to an exact analysis through random-walk tectgallel BS model and DP and then show that the parallel BS
niques[8]. The solution predictg.=1/K, whereK is the = model self-organizes onto the critical DP point. It is natural
number of sites updated at each time stp=@3 for the BS  to view the time evolution as a two-dimensioriaD) lattice
mode), and the “usual” (see, for instance[9]) r=3/2 (i,t), pi(t) being the value of the fitness of théh site at
mean-field SOC exponent for the duration of avalanches, i.e(discretgtime t. To each site of the 2D lattice, we associate a
the probability that an avalanche lastime steps scales as spinlike variablen;; equal to 0 if pi(t)>p and +1 if
t~" nearp.. Second, no conservation laws exist to keepp;i(t)=<p. In other wordsp; (=0 if p;(t) is stable and+1 if
track of the local readjustments of the interface. However, ifit is unstable. Obviously, the value of ;. ; depends on the
the (randon) amount by which the global minimal site is values ofn;_;;,n;;, and n;,,;: as soon as at least one
modified is fully reattributed to only one of its neighbor, the among these three sites is unstable, the centrapgiti will
model can be exactly solvdd0], also by a mapping onto a be updated. Since we redraw each site from a uniform dis-
random-walk problem. Hence it is no wonder that3/2 is  tribution between 0 and Ip;(t+1) will be smaller tharp
recovered. It is also possible to get exact scaling relationand thus unstable with probability and stable with prob-
between exponents, writing the time evolution of the “gap” ability 1—p. This rule determines 14 out of thé2 16 local
Pmin @and exploiting the hierarchical structure of avalanchesconditional probabilities Bn; ¢, 1|n;—1¢,N; ¢,Ni+1y), the last
[5]. two probabilities being P(0]0,0,0=1 and of course
Since an exact solution looks hopeless in this extremaP(1|0,0,0)=1—-P(0/0,0,0)=0: if a site and its two nearest
version, we shall review briefly an efficient and reliable neighbors are stable, it will remain stable with probability
method to compute numerically the critical point and thel. This last condition shows that the tuned parallel BS model
various critical exponents. This method will turn out to beis not fully probabilistic: according to the conventional ter-
inspiring for the parallel version of the BS model we intro- minology, the phase formed of 0 spins is calledaésorbing
duce below. Several authdr3,11] have remarked that it was phase[12]. The existence of an absorbing phase is a strong
strictly equivalent to starting from an initial configuration indication that the model should be in the DP universality
where all but the central site are uniformly distributed be-class[13]. We are going to prove that this is indeed the case.
tweenp and 1, for afixed numberp in ]0,1[. The central This equivalence was also suggested 4], but within a
site, set to any number strictly smaller thaninitiates ap continuum limit neglecting spatiotemporal correlations. This
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t+1

i i+1 i+2
FIG. 2. Plaquettes of our three-partner parallel BS model, show-
FIG. 1. Two-dimensional lattice on which the plaquettes con-ing the rather non-standard structure of the lattice topology, which

necting sites«; (,X;+ 1, to sitex; ., are represented. The topology is important to recognize for a correct correspondence with a DP
is that of the square lattice, for whigh,=0.7(6. . .. problem.

rather uncontrolled approximation led to the erroneous assef;athod discussed in Sec. IV. It yielgg = 0.53710.0001

tion that the arguments would hold for the original extremalfurther evidence that the original BS modehista DP prob-
model.
m.

) . o
For the sake of pedagogy, we first consider a two-sided” — .
model where just the left site itself and its neighbor of an From the definition of the tuned paralle! BS model, it is
ear that the control parametgr can be imposed to be

unstable site are updated at the next time step. The ma han th hreshol di he depinned
advantage is that we can compare the value of the singulari:k'?‘rgert an the DP threshold, corresponding to the depinne

that develops in the probability distribution with the well- 'egime, where the fraction of unstable or active siteg.e.,
documented value of the directed percolation threshold for §10S€ withp;<<p) becomes nonzera. is the or,der param-
2D squarelattice: p.=0.705 489 0.000 004 15]. The local  eter for this depinning transition:ve(p—pg)?, where

conditional probabilities read B=0.2764+0.0008.
P(0|1,0)=P(0/0,1)=P(0/1,1)=1-p and P(0/0,0)=1 As already asserted, the DP critical state can be reached
[supplemented, of course, with  P(0|ny,n,) either by tuning a control parameter as in the tuned parallel

=1-P(1|ny,n,) for any ny,n,]. These local conditional BS model or by going to a very small rate of evolution, since
probabilites are defined on every other triangularall that really matters is how avalanches are defined. We now
“plaquettes,” say, the up-pointing ones if time is running show that the parallel BS model converges indeed to the DP
upward as in Fig. 1, which connects causal spins from twaritical point. Let us denote,,(to) the gap, i.e., the small-
successive time slices. Now imagine that we call O sgiys  est number in the lattice at timig. Suppose thapmi,(t)
sites and 1 spinwgetsites; the rules of the game are that sitesconverges at large times to a valpe larger that the DP
have probabilityp to be wet and that up-pointing bonftee  critical valuep.. Consider a time, at which an avalanche
diagonal edges of a triangl@ave probabilityp, to conduct  starts withp.<pmin(to) <p.. Since the avalanche develops
fluid. This is just a generalized mixed bond-site percolationaccording to the parallel updating rule, nothing distinguishes
problem (a particular case of the Domany-Kinzel automa-its time evolution from the dynamics of the tuned parallel BS
ton), where the local conditional probabilities are straightfor-model with p fixed to p,(to). However, since the tuned

ward to write down12,16): parallel BS model is strictly equivalent to DP, the condition
P.<Pmin(to) =p implies that the avalanche is infinite. As a
P(1]/0,0=0, consequenceymin(to) cannot be less thap.,, in contradic-
tion with the hypothesis. Suppose conversely that p. of
P(1]1,0=P(1/0,2) =ppy DP. Let us consider an avalanche startingpaf,(t) = p.. .
Again, since the avalanche develops according to the parallel
P(1]1,1)= py pp*+ 2pp(1— Pp) 1= PsPp(2— Pp). updating rule, nothing distinguishes its time evolution from

the dynamics of the tuned parallel BS model wjttixed to
We can now readily proceed to the identification: one hag... But sincep., is supposed smaller than the R, the
p=psPp, andp=pspy(2— Py), SO thatp=p, andp,=1. The  activity must die after a finite number of time steps, in con-
one-sided tuned parallel BS is thus completely isomorphic téradiction with the starting hypothesig,(t) =p... We are
directed site percolation on a square lattice. Such an equivdhus led to conclude that.= p. of DP. This correspondence
lence generalizes readily for the origin@hree sitestuned  allows us to obtain the exponent of the avalanche distribution
parallel BS model17], but the lattice topology of the corre- from DP through standard scaling arguments,11]:
sponding site DP problem is rather nonstandaet Fig. 2 7=3—-1/(1+ B/y)=2.1082+ 0.0004, wherer is defined by
This subtlety has been overlooked in the literature, wherd®(S)dS~S™"dS, whereS is the size of an avalanche de-
some authors have compared their values of the three-partnfined here as the size of the corresponding DP cluster.
BS critical threshold with that of #ond DP on asquare y=2.278:0.002 andov, =v, /(y+3)=0.4294+ 0.0006.
lattice: 0.644 . ... Let usmention that the DP threshold vy is the standard susceptibility exponent for percolation
corresponding to the lattice topology shown in Fig. 2 and toproblems, while »j=1.7339-0.0003 and », =1.0969
the original (three-partnertuned parallel BS model can be =0.0003 describe the divergence of the two correlation
easily obtained numerically through the transfer-matrixlengths. All the values quoted here for the DP exponents are
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taken from Ref[15]. Grassberger has proposed a differentarbitrary initial conditions allows one to simulate DP for all
modification of the BS model, also in the DP universality p’s at the same time. The same set)g§ allows one to
class, in which a single site is activatéubt that with mini-  reconstruct the cluster statistics for glk: for p<p., only
mal fitnes$, but randomly among all active sitg3]. isolated finite clusters of sites witk ;<p exist (nonperco-
Note that the gap equation, derived for the usual extremdhting phasg while for p>p., an infinite cluster of sites
BS model[5,18], also holds for our parallel BS model. The with x; ;<p appears(percolating phase This situation is
gap equation defines the mechanism of approach to the seliemarkable in the sense that there is no control parameter for
organized critical attractor, whatever it might be. In contrastthe time evolution of the; ;. The parametep serves only as
theI" equation does not hold for the parallel BS model sincea threshold to distinguish wet from dry sites. This is com-
it is based on the hierarchical structure of embedded avapletely analogous to the “sea-level” formulation @fondi-
lanches, holding true due to the extremal rule of the standargbcted percolation: a random number between 0 and 1 is

BS model. attributed to each lattice site. One then introduces an arbi-
trary p (the sea levegland selects all sites whose number is
IV. SELF-ORGANIZED FORMULATION OF DIRECTED less thanp. For p<p. (wherep. is the percolation thresh-
PERCOLATION old), only isolated finite lakes exist, whereas forp., an

. ) infinite ocean appears.

We have thus seen that two modified versions of the BS ' There is, however, an important difference between stan-
model belong to the DP universality class. Can other selfyarg percolation and directed percolation: in standard perco-
organlzeq models be mve_nted that exhibit similar propertiespation thex; , are uniformly distributed and do not provide
From a different perspective, note that the tuned parallel Bg,y information on the critical properties; in directed perco-
model describes a dynamical evolution equivalent to thgaiion corresponding to Eq(d), the x; , have a distribution

probapilistic formulation of the DP model. This is quite P(x) that is singular at the DP threshold= p,. (in the long-
reminiscent of the correspondence between the Fokkegme |imit). The evolution equatioril) thus describes the

Planck formalism(probabilistic equation as for DFand the g htje |ong-range correlation that is intrinsic of DP. It turns
Langevin formalism(explicit stochastic evol_utlon_ equation gt that (1) is implicitly used by many authors, since it ba-
as for the tuned parallel BS mogieCan we imagine other gicay amounts to implementing an exclusive or. It has a

stochastic evolution equations that are, in some SenSgreaiadvantage over alternative schemes in that a single run
equivalent to DP? The philosophy of our approach is to

L . > Tsimulates many values gb at the same time. It is thus
transform a probabilistidiscreteprocess into a deterministic o hwhile to explain in depth how the DP critical behavior
continuousone, via ihe |r_1troduct|on of a random f“nCt'on.can emerge from the evolution of the distribution of the
[19_]. By dlsqrete and continuous we refer to the ense_mbles IQi’S- To see this, simply note that
which the (fitness variablesx; ; attributed to each site,t
take their values. In both cases, these variables live on a
discrete space-time lattice. To be equivalent to the site DP on
the square lattice, we need an equation of evolution for the
X; ¢ that can be easily connected to the DP connectivity prob-
ability p (fixed in ]0,1). To do this, we assume that a site
i,t is wet(dry) if its variablex; . is less(largep thanp. Note
that this rule has already been used for the tuned parallel B&here p(p) is the density of DP growth sites. From the
model and is again an essential step to achieve the desiréthown singular properties gf(p) [20], we deduce that near
correspondence. Consider the two sitésandi — 1t thatare  p. we should have the scaling behavior
connected to site,t+1 in the square lattice. The sought
evolution equation is a formula specifying;,, as a func-
tion of x; y andx;_,. The rules are the following: i; ; and tllv—=6 _ /v
X1, are both larger thap (dry), then the site,t+1 must P(X)~t>"17°g((X— pc)t=1),
be empty according to the DP rule, i.g; ., must be larger

thanp; if x; , or x;_,, or both are less thap (wet), then the  \yhere »=1.7336 and 6=0.1596, leading to
site i,t+1 is wet with probabilityp, i.e., X; (1, is smaller P(X)~(Xx—pe) A=~ (x—p.) ~°7%3 for large t. This

p(P)= jopmx)dx, @

thanp with probabilityp. _ _ stems from the relationp(p)=~(p—pc)?F((p— p)t™l)
These rules are embodied by the evolution equation ~(p—p)”? for t large and using the scaling relation
B= 4y [20]. Equation(1) provides an extremely efficient
Xj t+1=max{ 7; ¢+ 1, MiN(X; ¢, X 14) ], (1) method for a fast numerical estimation of the percolation

threshold for site DP on a square lattice: we find

where theyn's are random numbers, independently drawn forp.=0.7056+ 0.0002, in agreement with the value obtained
each sitd,t from a uniform density between 0 and 1. Equa-by much more complicated series expansion§lisl. Used
tion (1) provides the sought stochastic equation of evolutionjn combination with the leaf-tree algorithfi20], one can
equivalent to the DP probabilistic model. also get the critical exponents. Furthermore, all the results

We have gained something in the construction procesobtained above are not specific of the+1)-dimensional
indeed, notice thad does not appear explicitly in the evolu- case and generalize straigthforwardly to higher space dimen-
tion equation(1). It is thus equivalent to DP for aarbitrary ~ sions as well as to directed bond percolation for any spatial
p. In other words, following the evolution equatiéh) with  connectednesee[21] for an application to 21 DP).
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