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We introduce a parallel version of the Bak-Sneppen model that is rigorously shown to evolve spontaneously
to a site directed percolation critical point. This exemplifies the mechanism underlying a class of self-organized
critical models, in which self-organized criticality can be traced back to the existence of an underlying dy-
namical critical point. This critical point can be reached either by tuning a control parameter or by driving the
system infinitely slowly~i.e., by going at a very small rate of evolution!. An alternative dynamical evolution
formulation of the parallel version of the Bak-Sneppen model enables us to get a very precise estimation of the
critical threshold for the corresponding directed percolation problem.@S1063-651X~96!00910-5#

PACS number~s!: 02.50.Ey, 05.70.Ln, 64.60.Ht

I. INTRODUCTION

In a recent article@1# we proposed a general conceptual
framework to understand self-organized criticality~SOC! as
deeply related to tuned out-of-equilibrium critical points, if
viewed in an appropriate parameter space. More precisely,
SOC was envisionned as resulting from the tuning of the
order parameter to a vanishingly small but positive value,
thus ensuring that the corresponding control parameter lies
exactly at its critical value for the underlying depinning tran-
sition. This mechanism was proposed to apply to models of
sandpiles, earthquakes, depinning, fractal growth, and forest
fires, all examples that have been proposed as exhibiting
SOC.

In this paper, we show how this scenario applies quanti-
tatively on a variant of the Bak-Sneppen~BS! model of evo-
lution @2#, well known to display SOC~power-law behavior
and the existence of a dynamical steady state!. The variant
uses a modified rule in terms of the parallel evolution of
active sites. We are then able to show rigorously that this
modified BS model converges precisely onto the critical
point of directed percolation~DP!. We also introduce a tuned
version of the parallel variant of the BS model equivalent to
DP, exemplifying the duality between this class of SOC and
tunable critical points. Our derivation does not allow us to
draw conclusions about the initial version of the BS model,
while extensive numerical simulations seem to exclude that
it belongs to the DP universality class@3#. We then present a
general dynamical evolution equation equivalent to DP,
which allows for a precise determination of the critical
threshold. The outline of this paper is as follows. Section II
describes the original BS model and summarizes the results
already known. In Sec. III we introduce a parallel version of
the BS model, which we show to be completely equivalent to
a site DP problem, though involving an unusual lattice topol-
ogy. Section IV deals with a very powerful transfer-matrix

method for DP, which allows us to obtain very precise esti-
mations of the critical point. It exemplifies the fact that some
SOC models spontaneously organize themselves on known
tunable dynamical critical points. This extends previously
reported cases, such as a dynamical model of rupture in
which the rupture pattern self-organizes progressively in the
shape of the infinite critical bond percolation cluster and the
rupture stops when critical percolation is reached@4#.

II. THE EXTREMAL BAK-SNEPPEN MODEL

We study the one-dimensional version of the Bak-
Sneppen model of evolution, which is defined as follows.
Each of theN sites on a line array is filled with independent
random numberspi ,i51,2, . . . ,N, drawn from a uniform
distribution in@0,1#. At each step of the dynamics, the small-
estpi in the system is selected and replaced by a new ran-
dom numberpi8 still in @0,1#. At the same time, we update its
two nearest neighborspi21 ,pi11 with two new, independent
random numbers. Periodic boundary conditions are enforced.
Note that a choice of a uniform distribution is by no way
restrictive since what really matters is the nondecreasing
character of the~cumulative! probability distribution func-
tion for any probability density. Bak and Sneppen argued
that their model is to be thought of as a model of Darwinian
biological evolution: eachpi represents the ‘‘fitness’’ of the
i th species, i.e., its adaptativity to changes and mutations.
The species with the lowestpi dies and its extinction affects
its nearest neighborspi21 ,pi11 in the ecological nest, which
respond through an instantaneous mutation. Numerical evi-
dence indicates that, in the long-time and large-N limits, the
probability density of sites is strictly zero for allpi,pc and
constant abovepc50.667 0260.000 08@3,5,6#. In the con-
text of statistical mechanics, a more appealing interpretation
may be to think of the Bak-Sneppen model as a model for
self-organized depinning, where the interface undergoes a
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local rearrangement where the forcef i512pi is maximal.
This was the original motivation of Sneppen@7#: eventually,
the interface~which is equal to the set of thef i ’s! hardly
moves, stuck around the critical point.

SOC models feature not only an asymptotic stationary
probability density~the so-called ‘‘steady state’’!, but also
display power-law distributions for ‘‘avalanches.’’ In the BS
model, these are defined in the following way. Starting from
a givenpmin at time t, the durationt0 of an avalanche is the
minimum number of time stepst8 required forpmin(t1t8) to
be greater thanpmin(t). At the time t11, among the three
new random numbers in the system, one or more can be
smaller thanpmin(t) and the smallest one of all three will
initiate subsequent topplings, which follow the same rule at
each subsequent time step. This avalanche stops when all
sites are abovepmin(t). Then an avalanche starts elsewhere,
nucleating from the next minimal site, until a steady state is
reached where an infinite~the size of an avalanche being
defined as the number of toppled sites! avalanche develops:
the toppling of the minimal site will eventually trigger an
infinite number of topplings among spatially connected sites.
Note, however, that the avalanches in this extremal BS
model are spatially but not necesarilyspatiotemporallycon-
nected, unlike what happens for DP. This is due to the ex-
tremal nature of the dynamics in which an avalanche spreads
out only from the minimal site at all time steps and from its
two neighbors, while other possible sites being smaller than
the pmin that initially triggered the avalanche are left unacti-
vated, until eventually they get modified when the avalanche
returns to them.

Two major difficulties have so far precluded an exact
analysis. First, there are no evident means of relating the
global selection rule and the local cooperative effects. This is
bypassed in a mean-field~random neighbor! version where
the local spatial connectivity is lost and the problem becomes
amenable to an exact analysis through random-walk tech-
niques@8#. The solution predictspc51/K, whereK is the
number of sites updated at each time step (K53 for the BS
model!, and the ‘‘usual’’ ~see, for instance,@9#! t53/2
mean-field SOC exponent for the duration of avalanches, i.e.,
the probability that an avalanche lastst time steps scales as
t2t near pc . Second, no conservation laws exist to keep
track of the local readjustments of the interface. However, if
the ~random! amount by which the global minimal site is
modified is fully reattributed to only one of its neighbor, the
model can be exactly solved@10#, also by a mapping onto a
random-walk problem. Hence it is no wonder thatt53/2 is
recovered. It is also possible to get exact scaling relations
between exponents, writing the time evolution of the ‘‘gap’’
pmin and exploiting the hierarchical structure of avalanches
@5#.

Since an exact solution looks hopeless in this extremal
version, we shall review briefly an efficient and reliable
method to compute numerically the critical point and the
various critical exponents. This method will turn out to be
inspiring for the parallel version of the BS model we intro-
duce below. Several authors@3,11# have remarked that it was
strictly equivalent to starting from an initial configuration
where all but the central site are uniformly distributed be-
tweenp and 1, for afixed numberp in #0,1@. The central
site, set to any number strictly smaller thanp, initiates ap

avalanche, which either dies forp,pc when all sites are
greater thanp or has a finite probability to go on forever for
p.pc . Random numbers used when a site topples are still
taken from a uniform density in@0,1#. Herep plays the role
of a control parameter and each run for a differentp corre-
sponds in the original model to starting with a given
pmin5p. Note that for p,pc , the p avalanches have a
nested structure: eachp8 avalanche is contained within a
largerp avalanche forp8,p. Reference@3# used this remark
to get the following estimates: t51.07360.003,
g52.7060.02, and sn'50.411460.0020. Here and
throughout this paperg describes the average size of an ava-
lanche nearpc , ^s(p)&;up2pcu2g, andsn' is the expo-
nent describing the maximum spatial~i.e., with respect to the
transverse coordinatei ) extent of an avalanche:b(t);tsn'

for an avalanche lastingt time steps,t large, nearpc . The
definition of t is the same as in the mean-field version.

III. CORRESPONDENCE BETWEEN THE PARALLEL BS
MODEL AND DIRECTED PERCOLATION

Our parallel BS model is the same as the initial extremal
version except thatall sites that have their numbers below
pmin , and not solely the smallest one, have their values and
those of their neighbors replaced by new random numbers in
@0,1#. We also introduce the tuned parallel BS model, which
naturally consists in updating at a given time step all sites
being smaller thanp and their ~respective! left and right
nearest neighbors, wherep is fixed in @0,1#. The updating is
again done in parallel for all unstable sites and any site
neighbored by two toppling sites is updated once and only
once.p plays the role of a control parameter. Note first that,
in contrast to the extremal BS version, avalanches are both
spatially and spatiotemporally connected, as in DP.

We first establish the equivalence between the tuned par-
allel BS model and DP and then show that the parallel BS
model self-organizes onto the critical DP point. It is natural
to view the time evolution as a two-dimensional~2D! lattice
( i ,t), pi(t) being the value of the fitness of thei th site at
~discrete!time t. To each site of the 2D lattice, we associate a
spinlike variableni ,t equal to 0 if pi(t).p and 11 if
pi(t)<p. In other words,ni ,t50 if pi(t) is stable and11 if
it is unstable. Obviously, the value ofni ,t11 depends on the
values ofni21,t ,ni ,t , and ni11,t : as soon as at least one
among these three sites is unstable, the central sitepi(t) will
be updated. Since we redraw each site from a uniform dis-
tribution between 0 and 1,pi(t11) will be smaller thanp
and thus unstable with probabilityp and stable with prob-
ability 12p. This rule determines 14 out of the 24516 local
conditional probabilities P(ni ,t11uni21,t ,ni ,t ,ni11,t), the last
two probabilities being P(0u0,0,0)51 and of course
P(1u0,0,0)512P(0u0,0,0)50: if a site and its two nearest
neighbors are stable, it will remain stable with probability
1. This last condition shows that the tuned parallel BS model
is not fully probabilistic: according to the conventional ter-
minology, the phase formed of 0 spins is called anabsorbing
phase@12#. The existence of an absorbing phase is a strong
indication that the model should be in the DP universality
class@13#. We are going to prove that this is indeed the case.
This equivalence was also suggested in@14#, but within a
continuum limit neglecting spatiotemporal correlations. This
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rather uncontrolled approximation led to the erroneous asser-
tion that the arguments would hold for the original extremal
model.

For the sake of pedagogy, we first consider a two-sided
model where just the left site itself and its neighbor of an
unstable site are updated at the next time step. The main
advantage is that we can compare the value of the singularity
that develops in the probability distribution with the well-
documented value of the directed percolation threshold for a
2D squarelattice:pc50.705 48960.000 004@15#. The local
conditional probabilities read
P(0u1,0)5P(0u0,1)5P(0u1,1)512p and P(0u0,0)51
@supplemented, of course, with P(0un1 ,n2)
512P(1un1 ,n2) for any n1 ,n2#. These local conditional
probabilities are defined on every other triangular
‘‘plaquettes,’’ say, the up-pointing ones if time is running
upward as in Fig. 1, which connects causal spins from two
successive time slices. Now imagine that we call 0 spinsdry
sites and 1 spinswetsites; the rules of the game are that sites
have probabilityps to be wet and that up-pointing bonds~the
diagonal edges of a triangle! have probabilitypb to conduct
fluid. This is just a generalized mixed bond-site percolation
problem ~a particular case of the Domany-Kinzel automa-
ton!, where the local conditional probabilities are straightfor-
ward to write down@12,16#:

P~1u0,0!50,

P~1u1,0!5P~1u0,1!5pspb ,

P~1u1,1!5ps@pb
212pb~12pb!#5pspb~22pb!.

We can now readily proceed to the identification: one has
p5pspb andp5pspb(22pb), so thatp5ps andpb51. The
one-sided tuned parallel BS is thus completely isomorphic to
directed site percolation on a square lattice. Such an equiva-
lence generalizes readily for the original~three sites! tuned
parallel BS model@17#, but the lattice topology of the corre-
sponding site DP problem is rather nonstandard~see Fig. 2!.
This subtlety has been overlooked in the literature, where
some authors have compared their values of the three-partner
BS critical threshold with that of abond DP on asquare
lattice: 0.6447 . . . . Let usmention that the DP threshold
corresponding to the lattice topology shown in Fig. 2 and to
the original ~three-partner! tuned parallel BS model can be
easily obtained numerically through the transfer-matrix

method discussed in Sec. IV. It yieldspc850.537160.0001
further evidence that the original BS model isnota DP prob-
lem.

From the definition of the tuned parallel BS model, it is
clear that the control parameterp can be imposed to be
larger than the DP threshold, corresponding to the depinned
regime, where the fractionv of unstable or active sites~i.e.,
those withpi,p) becomes nonzero.v is theorder param-
eter for this depinning transition:v}(p2pc8)

b, where
b50.276460.0008.

As already asserted, the DP critical state can be reached
either by tuning a control parameter as in the tuned parallel
BS model or by going to a very small rate of evolution, since
all that really matters is how avalanches are defined. We now
show that the parallel BS model converges indeed to the DP
critical point. Let us denotepmin(t0) the gap, i.e., the small-
est number in the lattice at timet0. Suppose thatpmin(t)
converges at large times to a valuep` larger that the DP
critical valuepc . Consider a timet0 at which an avalanche
starts withpc,pmin(t0),p` . Since the avalanche develops
according to the parallel updating rule, nothing distinguishes
its time evolution from the dynamics of the tuned parallel BS
model with p fixed to pmin(t0). However, since the tuned
parallel BS model is strictly equivalent to DP, the condition
pc,pmin(t0)5p implies that the avalanche is infinite. As a
consequence,pmin(t0) cannot be less thanp` , in contradic-
tion with the hypothesis. Suppose conversely thatp`,pc of
DP. Let us consider an avalanche starting atpmin(t)5p` .
Again, since the avalanche develops according to the parallel
updating rule, nothing distinguishes its time evolution from
the dynamics of the tuned parallel BS model withp fixed to
p` . But sincep` is supposed smaller than the DPpc , the
activity must die after a finite number of time steps, in con-
tradiction with the starting hypothesispmin(t)5p` . We are
thus led to conclude thatp`5pc of DP. This correspondence
allows us to obtain the exponent of the avalanche distribution
from DP through standard scaling arguments@3,11#:
t5321/(11b/g)52.108260.0004, wheret is defined by
P(S)dS;S2tdS, whereS is the size of an avalanche de-
fined here as the size of the corresponding DP cluster.
g52.27860.002 andsn'5n' /(g1b)50.429460.0006.
g is the standard susceptibility exponent for percolation
problems, while n i51.733960.0003 and n'51.0969
60.0003 describe the divergence of the two correlation
lengths. All the values quoted here for the DP exponents are

FIG. 2. Plaquettes of our three-partner parallel BS model, show-
ing the rather non-standard structure of the lattice topology, which
is important to recognize for a correct correspondence with a DP
problem.

FIG. 1. Two-dimensional lattice on which the plaquettes con-
necting sitesxi ,t ,xi11,t to sitexi ,t11 are represented. The topology
is that of the square lattice, for whichpc50.705 . . . .
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taken from Ref.@15#. Grassberger has proposed a different
modification of the BS model, also in the DP universality
class, in which a single site is activated~not that with mini-
mal fitness!, but randomly among all active sites@3#.

Note that the gap equation, derived for the usual extremal
BS model@5,18#, also holds for our parallel BS model. The
gap equation defines the mechanism of approach to the self-
organized critical attractor, whatever it might be. In contrast,
theG equation does not hold for the parallel BS model since
it is based on the hierarchical structure of embedded ava-
lanches, holding true due to the extremal rule of the standard
BS model.

IV. SELF-ORGANIZED FORMULATION OF DIRECTED
PERCOLATION

We have thus seen that two modified versions of the BS
model belong to the DP universality class. Can other self-
organized models be invented that exhibit similar properties?
From a different perspective, note that the tuned parallel BS
model describes a dynamical evolution equivalent to the
probabilistic formulation of the DP model. This is quite
reminiscent of the correspondence between the Fokker-
Planck formalism~probabilistic equation as for DP! and the
Langevin formalism~explicit stochastic evolution equation
as for the tuned parallel BS model!. Can we imagine other
stochastic evolution equations that are, in some sense,
equivalent to DP? The philosophy of our approach is to
transform a probabilisticdiscreteprocess into a deterministic
continuousone, via the introduction of a random function
@19#. By discrete and continuous we refer to the ensembles in
which the ~fitness! variablesxi ,t attributed to each sitei ,t
take their values. In both cases, these variables live on a
discrete space-time lattice. To be equivalent to the site DP on
the square lattice, we need an equation of evolution for the
xi ,t that can be easily connected to the DP connectivity prob-
ability p ~fixed in ]0,1@). To do this, we assume that a site
i ,t is wet ~dry! if its variablexi ,t is less~larger! thanp. Note
that this rule has already been used for the tuned parallel BS
model and is again an essential step to achieve the desired
correspondence. Consider the two sitesi ,t andi21,t that are
connected to sitei ,t11 in the square lattice. The sought
evolution equation is a formula specifyingxi ,t11 as a func-
tion of xi ,t andxi21,t . The rules are the following: ifxi ,t and
xi21,t are both larger thanp ~dry!, then the sitei ,t11 must
be empty according to the DP rule, i.e.,xi ,t11 must be larger
thanp; if xi ,t or xi21,t or both are less thanp ~wet!, then the
site i ,t11 is wet with probabilityp, i.e., xi ,t11 is smaller
thanp with probability p.

These rules are embodied by the evolution equation

xi ,t115max@h i ,t11 ,min~xi ,t ,xi21,t!#, ~1!

where theh ’s are random numbers, independently drawn for
each sitei ,t from a uniform density between 0 and 1. Equa-
tion ~1! provides the sought stochastic equation of evolution,
equivalent to the DP probabilistic model.

We have gained something in the construction process:
indeed, notice thatp does not appear explicitly in the evolu-
tion equation~1!. It is thus equivalent to DP for anarbitrary
p. In other words, following the evolution equation~1! with

arbitrary initial conditions allows one to simulate DP for all
p’s at the same time. The same set ofxi ,t allows one to
reconstruct the cluster statistics for allp’s: for p,pc , only
isolated finite clusters of sites withxi ,t,p exist ~nonperco-
lating phase!, while for p.pc , an infinite cluster of sites
with xi ,t,p appears~percolating phase!. This situation is
remarkable in the sense that there is no control parameter for
the time evolution of thexi ,t . The parameterp serves only as
a threshold to distinguish wet from dry sites. This is com-
pletely analogous to the ‘‘sea-level’’ formulation of~nondi-
rected! percolation: a random number between 0 and 1 is
attributed to each lattice site. One then introduces an arbi-
trary p ~the sea level! and selects all sites whose number is
less thanp. For p,pc ~wherepc is the percolation thresh-
old!, only isolated finite lakes exist, whereas forp.pc , an
infinite ocean appears.

There is, however, an important difference between stan-
dard percolation and directed percolation: in standard perco-
lation, thexi ,t are uniformly distributed and do not provide
any information on the critical properties; in directed perco-
lation corresponding to Eq.~1!, the xi ,t have a distribution
P(x) that is singular at the DP thresholdx5pc ~in the long-
time limit!. The evolution equation~1! thus describes the
subtle long-range correlation that is intrinsic of DP. It turns
out that (1) is implicitly used by many authors, since it ba-
sically amounts to implementing an exclusive or. It has a
great advantage over alternative schemes in that a single run
simulates many values ofp at the same time. It is thus
worthwhile to explain in depth how the DP critical behavior
can emerge from the evolution of the distribution of the
xi ’s. To see this, simply note that

r~p!5E
0

p

P~x!dx, ~2!

where r(p) is the density of DP growth sites. From the
known singular properties ofr(p) @20#, we deduce that near
pc we should have the scaling behavior

P~x!'t1/n i2dg„~x2pc!t
1/n i

…,

where n i51.7336 and d50.1596, leading to
P(x)'(x2pc)

2(12dn i)'(x2pc)
20.7233 for large t. This

stems from the relationr(p)'(p2pc)
bF„(p2pc)t

1/n i
…

'(p2pc)
b for t large and using the scaling relation

b5dn i @20#. Equation~1! provides an extremely efficient
method for a fast numerical estimation of the percolation
threshold for site DP on a square lattice: we find
pc50.705660.0002, in agreement with the value obtained
by much more complicated series expansions in@15#. Used
in combination with the leaf-tree algorithm@20#, one can
also get the critical exponents. Furthermore, all the results
obtained above are not specific of the (111)-dimensional
case and generalize straigthforwardly to higher space dimen-
sions as well as to directed bond percolation for any spatial
connectedness~see@21# for an application to 211 DP!.
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